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With increasing energy consumption in urban rail transit systems, researchers have paid signifcant attention to energy-saving
train control. In this paper, we propose an efective train trajectory optimization method to reduce the energy consumption based
on coasting control, in which coasting control regimes are added to balance running time and energy consumption. For better
determining the starting points of coasting control regimes, the whole train running process is divided into several subintervals.
Ten, aiming to achieve energy efciency, coasting regimes are added to the subintervals with high energy-saving efects, in which
more energy consumption can be reduced with the same running time addition. Based on this, a coasting control method is
proposed to generate energy-saving trajectories considering train dynamics, safety, and punctuality. In addition, the proposed
method can solve the multisection energy-saving train trajectory optimization problem to obtain optimal running time schemes
and related trajectories. Finally, numerical examples based on one of the Beijing metro lines are implemented to verify the
efectiveness of the proposed method. Te results show that, for the single-section train control problem, the proposed coasting
control algorithm can achieve signifcant energy-saving efects compared to the practical trajectory and calculate energy-saving
trajectory in shorter computation times compared to the dynamic programming method. Meanwhile, for the multisection train
control problem, energy consumption can be further reduced by optimizing trajectories and running times integratedly.

1. Introduction

Urban rail transit (URT) systems are developing rapidly in
recent years to meet the increasing passenger demands.
Meanwhile, URT systems consume a huge amount of energy,
especially in big cities (e.g., Beijing, New York, and Tokyo).
With rising energy prices and environmental issues, energy cost
is becoming a grand challenge. Terefore, energy-saving
strategies are being implemented to reduce energy consump-
tion. Tese strategies mainly include [1] applying the energy-
efcient rolling stock; demand-driven train timetabling aiming
to reduce the number of train services; energy-efcient train
timetabling; and energy-efcient train control. In this paper, we
focus on the energy-efcient train control. More details about
other strategies can be found in works [1, 2].

Energy-efcient train control mainly focuses on re-
ducing energy consumption by optimizing train trajectory
(or called speed profle and driving strategy). In recent years,
many works have been devoted to design algorithms for
generating energy-saving train trajectories while satisfying
operational constraints. Te frst research on the optimal
train control problem was carried out in 1968, in which
Pontryagain’s maximum principle (PMP) was used to solve
the problem for level tracks [3]. Based on the PMP, the
optimal train control regimes (i.e., maximum acceleration
(MA), cruising (CR), coasting (CO), and maximum braking
(MB)) for the energy-efcient operation were proposed. In
addition, many researchers have applied the PMP to solve
the optimal train control problem considering varying speed
restrictions and gradients [4–7]. Especially, the scheduling
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and control group at the University of South Australia
presented a systematic review of the optimal train control
theory from the viewpoint of PMP [8, 9]. Methods in studies
[3–9] belong to the indirect methods, in which the optimal
solutions are obtained with complicated computational
processes and large computation times.

With the application of automatic train operation (ATO)
systems in railway systems, especially in URT systems, the
recommended trajectory for the next running process
should be determined before train departure. Tus, direct
methods are applied to calculate optimal train trajectories
with shorter computation times. In direct methods, the
control actions (i.e., traction/braking force or acceleration)
and/or state variables (i.e., position, speed, and time) are
discretized to transform the optimal train control problems
into mathematical programming problems [10]. By splitting
the train running process to build a discrete-position model
and linearization with piecewise approximation, the original
optimal train control problem was rebuilt into a mixed
integer linear programming model, which can be solved
efectively by existing solvers [11, 12]. Dynamic pro-
gramming (DP) algorithm has been widely applied in the
optimal train control problem [13–17]. It was necessary to
transform the optimal problem into multiple decision
processes in the DP algorithm, which can be realized by state
space discretization [13]. Specially, for the energy-efcient
train control problem, the cost of state transition was set as
energy consumption and decision actions were set as
traction and braking forces. By backwards calculating the
optimal policies of each state space point and forwards
searching, a set of optimal control actions and the optimal
trajectory with minimum energy consumption can be ob-
tained. In study [14], the performance of the DP algorithm,
genetic algorithm, and ant colony optimization algorithm
was contrasted and compared. It was found that the DP
algorithm can obtain the best solution with more compu-
tational resources compared to the other two algorithms.
Te pseudospectral method was also employed in the op-
timal train control problem, in which the continuous-time
optimal control problem was transcribed into a discrete
nonlinear programming problem [18, 19].

On the other hand, some works focus on determining the
optimal conversion points of control regimes to formulate
the energy-efcient train trajectories. Train trajectory op-
timization based on coasting control is a popular method-
ology to enhance the energy efciency, in which energy
consumption is reduced by adjusting coasting regimes.
Generally, in coasting control, the starting points of coasting
regimes are determined by genetic algorithms [20–23]. A
genetic algorithm was proposed to search for the points of
coasting regimes where the number of coasting regimes was
predetermined [20]. To deal with complex operation situ-
ations, a hierarchical genetic algorithm was introduced to
integrate the determination of the number of coasting re-
gimes and points of coasting regimes [21]. Te simulation
results showed that coasting control was an economical
approach to balance running time and energy consumption,
which can achieve a good performance in energy-saving.
However, genetic algorithms may fail to converge onto

a good solution and cause a long computation time. In study
[23], coasting control was applied to calculate energy-saving
trajectories, considering the utilization of regenerative
braking energy.

Diferent from the existing coasting control methods
[20–23], this paper proposes a novel searching method to
determine the points of coasting regimes. First, we formulate
a distance-based model to describe the train dynamics.
Considering the operational constraints and the energy-
saving objective, an optimal train control model is built.
Ten, fay-out trajectory and subinterval are introduced.Te
former clarifes the boundary of trajectory optimization, into
which coasting regimes can be added for energy con-
sumption reduction with running time addition.Meanwhile,
the trajectory is divided into several subintervals for better
determining the starting points of coasting regimes. Finally,
a coasting control algorithm is designed to calculate the
energy-saving train trajectory meeting the constraint of pre-
given running time. Coasting regimes are added into the
subintervals with high energy consumption reduction ef-
ciency, which means that more energy consumption can be
reduced with the same running time addition. Specially, the
proposed coasting control algorithm can be applied to the
energy-saving train control problem for multisection, and
then the energy-saving train trajectory and running time
schemes can be generated simultaneously.

Te rest of this paper is organized as follows. In Section
2, we describe the energy-saving train control problem.
Ten, we propose the solution methodology for the optimal
control problem based on coasting control in Section 3. In
Section 4, we give two numerical examples, i.e., a single-
section case and a multisection case based on one of the
Beijing metro lines, to demonstrate the efectiveness and
efciency of the proposed approaches. We conclude this
paper in Section 5.

2. Problem Formulation

2.1. Defnition of Symbols. For a better understanding of our
paper, we defne the necessary notations and parameters for
the energy-efcient train control problem in Table 1.

2.2. Train Dynamics Modeling. By considering the train
traction, braking force, running basic resistance, and line
resistance, the dynamics model of train motion can be
formulated as follows [24].

v
dv

dx
�

F − B − W0 − Wl

M(1 + c)
,

dt

dx
�
1
v

.

(1)

Te train traction force F can be expressed as follows:

F � μfFm(v), (2)

where Fm is the maximum traction force, which is de-
pendent on the train characteristics and speed; μf is the
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traction force adjustment coefcient, μf ∈ [0, 1]. Similarly,
the train braking force B can be expressed as follows:

B � μbBm(v), (3)

where Bm is the maximum braking force, which is dependent
on the train characteristics and speed; μb is the braking force
adjustment coefcient, μb ∈ [0, 1]. Based on the adjustment
coefcients μf and μb, the corresponding train control re-
gimes can be described as shown in Table 2.

Te train running basic resistance can be formulated
based on the Davis equation.

W0(v) � M a1 + a2v + a3v
2

􏼐 􏼑, (4)

where a1, a2, and a3 are nonnegative coefcients. Moreover,
the line resistance, caused by track slope, can be calculated as
follows:

Wl(x) � Mg sin(θ(x)), (5)

where θ(x) is the track slope at position x.
In addition, we adopt distance-based modelling to

generate the energy-efcient train control strategy. Te
whole section [Si, Si+1] is divided into K subsections,
K∆x � Si+1 − Si, as shown in Figure 1. Te postions of
discretizing points are denoted as x1, . . . , xK+1􏼈 􏼉, and satisfy:

xk+1 � xk + ∆x. (6)

Meanwhile, the train running speed of discretizing
points are denoted as v1, . . . , vK+1􏼈 􏼉. Te relationship be-
tween vk+1 and vk can be described as follows:

v
2
k+1 − v

2
k � 2ak∆x. (7)

Based on equation (7), vk+1 can be calculated as follows:

vk+1 �

���������

v
2
k + 2ak∆x

􏽱

, (8)

where ak is the train acceleration in subsection [xk, xk+1],
which can be calculated as follows:

ak �
μf,kFm,k − μb,kBm,k − W0,k − Wl,k

M(1 + c)
, (9)

where Fk, Bk, W0,k, and Wl,k are the train traction force,
braking force, basic resistance, and line resistance in sub-
section [xk, xk+1], respectively. Finally, the train running
times of discretizing points are denoted as t1, . . . , tK+1􏼈 􏼉, and
satisfy:

tk+1 �
2∆x

vk + vk+1
+ tk. (10)

2.3. Energy-Saving Train Control Model for Single Section.
In this section, based on the distance-based modelling, we
introduce the energy-saving train control model for a single-
section[Si, Si+1]. Te train running process from station i to
station i + 1 is analyzed, which is divided into K subsection.
First, the train traction energy consumption is introduced.
At each subsection, the train traction energy consumption
can be calculated as follows:

Ek � Fk

∆x

η
. (11)

Ten, the cost function of energy-saving train control
problem for the single-section can be described as follows:

Ji,i+1 � 􏽘
K

k�1
Ek. (12)

For the train running process from station i to station
i + 1, the following constraints should be considered. Te
train speed at station i and station i + 1 are equal to zero:

vK+1 � v1 � 0. (13)

To keep the safe operation, the train speed must be less
than the speed restrictions:

0≤ vk ≤Vk. (14)

To keep the punctual operation, the pre-given running
time should be satisfed:

tK+1 − t1 � Ti,i+1. (15)

Ten, the energy-saving train control problem for the
single-section [Si, Si+1] can be stated as follows.

min Ji,i+1 � 􏽘
K

k�1
Ek,

s.t. μf,k, μb,k ∈ [0, 1],

Equations (6) to (10), and (13) to (15).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

Table 1: Notations and parameters.

Index Description
i Index of station
j Index of subinterval
k Index of discretizing point
Parameters Description
M Train mass (t)
c Rotary mass coefcient
η Efciency of train motor
V Speed restriction (m/s)
Si Position of station i (m)
Ti,i′ Running time from station i to station i′ (s)
W0 Train running basic resistance (kN)
Wl Line resistance (kN)
Fm Maximum train traction force (kN)
Bm Maximum train braking force (kN)
State variables Description
x Train running position (m)
t Train running time (s)
v Train running speed (m/s)
F Train traction force (kN)
B Train braking force (kN)
Decision variables Description
μf Train traction force adjustment coefcient
μb Train braking force adjustment coefcient
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By solving the abovementioned optimal control problem
17, optimal control actions μ∗f,1, . . . , μ∗f,K􏽮 􏽯 and
μ∗b,1, . . . , μ∗b,K􏽮 􏽯 can be obtained to generate the energy-
efcient train trajectory.

2.4. Energy-Saving Train Control Model for Multisection.
Based on the energy-saving train control model for a single-
section, the model for multisection is built in this section.
Considering the train running process from station i to
station i + I, I≥ 2, the whole section [Si, Si+I] is also divided
into K subsections, K∆x � Si+I − Si, as shown in Figure 2. A
set κi, . . . , κi+I􏼈 􏼉 is introduced to represent the indexes of the
discretizing points that overlap with the station positions
Si, . . . , Si+I􏼈 􏼉, which can be described as follows:

xκ
i′

� Si′ ,∀i
′ ∈ i, . . . , i + I{ }. (17)

Considering the middle stations in the multisection
running process, the constraint 14 that limits the train speed
at stations should be rewritten as follows:

vk � 0,∀k ∈ κi, . . . , κi+I􏼈 􏼉. (18)

Meanwhile, the punctuality constraint 16 should be
rewritten as follows:

tK+1 − t1 � Ti,i+I, (19)

where only the total running time from station i to station
i + I is limited, the running times of each section are un-
limited, which can be adjusted in the optimization process.

Ten, the energy-saving train optimal control problem
for the multisection [Si, Si+I] can be stated as follows.

min Ji,i+I � 􏽘
K

k�1
Ek, s.t. μf,k, μb,k ∈ [0, 1].

⎧⎨

⎩ (20)

Equations (6–10), (14), (18), and (19).
Te energy-efcient train trajectory from station i to

station i + I can be obtained by solving the optimal train
control problem 21. Meanwhile, the energy-efcient dis-
tribution of running time T∗i,i+1, . . . , T∗i+I−1,i+I􏽮 􏽯 can be
generated, which can be calculated as follows:

T
∗
i′ ,i′+1 � t

∗
k

i′+1
− t
∗
k

i′
,∀i′ ∈ i, . . . , i + I − 1{ }. (21)

3. Coasting Control Algorithm

Typically, the pre-given running times are not those asso-
ciated with the minimum running times (fat-out trajecto-
ries), but they include running time supplements to be able
to recover delays when necessary or fulfl running at a lower
speed with less energy consumption [25]. Coasting control is
an economical approach to balance running time and energy
consumption in train operation [21]. In this section, we
introduce a coasting control algorithm to calculate the
energy-saving trajectory. First, the calculation of fat-out
trajectory is introduced to generate the minimum running
time. Ten, the subinterval is proposed to divide the whole
running process into sections, in which coasting regimes can
be added. Finally, coasting points are determined based on
the principle that adding coasting regimes to subintervals
with high energy-saving efects.

3.1. Flat-Out Trajectory. Under fat-out running, a train is
travelling close to speed restrictions. As shown in Figure 3,
when the train speed is less than the speed restriction, MA
regime is applied to speed up; when the speed is close to the
speed restriction, CR regime is applied to keep the train
running at high-speed; MB regime is applied for low-speed
restrictions and stopping. Tus, there is no coasting regime
in the trajectory. Tis kind of trajectory is defned as the fat-
out trajectory [23], which can be calculated as shown in
Algorithm 1 and Figure 4. In the fat-out trajectory calcu-
lation algorithm, train control regimes are determined based
on the relationship between the train running speed and
speed restriction. Under the constraints of safety and train
characteristics, the algorithm keeps the train running speed
as close to or within speed restrictions.

Based on the fat-out trajectory calculation algorithm,
the minimum running time can be calculated as follows:

T
f lat
i,i′ � t

f lat
K+1 − t1, (22)

where Tf lat
i,i′

is the minimum running time from station i to
station i′; tf latK+1 is the train running time at the ending point
(station i′) of the fat-out trajectory.

3.2. Defnition of Subinterval. Based on the fat-out trajec-
tory, coasting regimes can be added into the control se-
quence, as shown in Figure 3. For better determining the
starting points of coasting regimes, the whole running
process is divided into several subintervals. Te subinterval
means the train running process starts with an accelerating
regime and ends with a braking regime. Meanwhile, there

Table 2: Description of control regimes based on μf and μb.

Regime Description
MA μf � 1 and μb � 0
CR μf ∈ (0, 1) and μb � 0 or μf � 0 and μb ∈ (0, 1)

CO μf � 0 and μb � 0
MB μf � 0 and μb � 1

v

vk
vk+1

ak (μf,k , μb,k)

x1 x2 x3 xk xK xxk+1 xK–1 xK+1

Si+1Si

Figure 1: Te illustration of the section discretizing.
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can only be one accelerating phase and one braking phase in
a subinterval, which makes the accelerating phase and its
subsequent adjacent braking phase form a subinterval. As
shown in Figure 3, the frst subinterval begins with a MA
(accelerating) regime and ends with an MB (braking) re-
gime, and the MA and MB regimes are adjacent. Four
important points (xaj

, xcj
, xdj

, and xbj
) are introduced to

describe the subinterval j, as shown in Figure 5.

(1) xaj
: the beginning position of the accelerating regime

(2) xcj
: the beginning position of the coasting regime

(3) xdj
: the ending position of the coasting regime

(4) xbj
: the ending position of the braking regime.

Without coasting regime addition, xcj
is equal to the

ending position of the accelerating regime, and xdj
is equal

to the starting position of the braking regime. As the du-
ration of the coasting regime increases, the beginning po-
sition of the coasting regime xcj

moves to xaj
, and the ending

position of the coasting regime xdj
moves to xbj

. Specially,
when xdj

� xbj
or xcj

� xaj
, the duration of the coasting

regime cannot increase, as shown in Figure 6. For two
adjacent subintervals, if xdj

� xbj
in the frst subinterval and

xc,j+1 � xa,j+1 in the second subinterval, then these two
adjacent subintervals can be merged as a new subinterval, as
shown in Figure 6. Specially, the beginning position of the
accelerating regime and the beginning position of the
coasting regime of the new subinterval are equal to those of
subinterval j, the ending position of the coasting regime and
the ending position of the braking regime of the new
subinterval are equal to those of subinterval j + 1.

3.3. Coasting Points Determination. Due to the line char-
acteristics (like speed restrictions and track slope), the fat-
out trajectory consists of several subintervals, as shown in
Figure 3. We propose a coasting control algorithm to dis-
tribute the running time supplements to subintervals. Te
distribution criterion distributes the running time supple-
ments to subintervals where energy consumption can be
reduced more signifcantly. To evaluate the efciency of
energy consumption reduction, indicator ρj is introduced:

ρj � −
∆Ej

∆Tj

� −
􏽐

bj

k�aj
Ek
′ − Ek( 􏼁

tbj
′ − tbj

, (23)

where ρj is the energy-saving efect of subinterval j; ∆Ej �

􏽐
bj

k�aj
(Ek
′ − Ek) is the energy consumption change value after

adding the coasting regime of subinterval j; ∆Tj � tbj
′ − tbj

is

the running time change value after adding the coasting
regime of subinterval j. In addition, the larger ρj means that
the more energy consumption can be reduced in subinterval
j with the same running time supplement. Considering the
whole running process from station i to station i′, the limited
running time supplement should be distributed to the
subinterval with the maximum ρj for energy saving. Based
on this, the coasting control algorithm is proposed:

Specially, for the multisection running process, the
proposed coasting control algorithm is efective. Due to the
multisection running process, the speed limit constraints of
middle stations need to be considered additionally. First, the
multisection running process will be divided into several
subintervals with the same number of sections, as shown in

v

x1 x2 xk xk' xK xxK+1

Si Si+1 Si+I–1 Si+I

Figure 2: Te illustration of multisection discretizing.

Subinterval Subinterval

MA CR CRMB MB

x

v

Flat-out trajectory
CO regime
Speed restriction

Figure 3: Te illustration of fat-out trajectory and coasting re-
gimes addition.

Start

Section discretizing

Set k=1, v1=0 and vK+1=0

vk < Vk+1 No

Novk == Vk+1

Adopt MA regime, set μf,k=1
and μb,k=0 to calculate vk+1

Adopt CR regime, set μf,k=0
and μb,k=0 to calculate vk+1

Adopt MB regime, set vk+1=Vk+1
and reverse search the starting

point of MB regime

Yes

Yes

Set k= k + 1

Yes k < K

No

End

Figure 4: Te illustration of the fat-out trajectory calculation
algorithm.
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Figure 2. Ten, each section will be divided into several
subintervals based on the defnition of the subinterval. Tus,
the running time supplement can be distributed for the
multisection running process as described in the Algo-
rithm 2, to generate energy-saving running time schemes
and related trajectories.

4. Numerical Examples

In this section, we present two numerical examples to
demonstrate the performance of the proposed energy-
efcient coasting control algorithm. Te frst example sol-
ves the energy-saving train control problem along the single-
section, in which only the energy-saving train trajectories are
optimized. Te second one involves the energy-saving train
control problem along the multisection, in which both the
energy-saving train trajectories and running time scheme
are optimized.

All examples are based on the data of one of the
Beijing metro lines. Te speed restrictions and track
gradient between station 1 and station 5 are shown in
Figure 7. Te parameters of the running train are listed in
Table 3. Te maximum train traction force, the maximum
braking force, and running basic resistance are given as
follows:

Fm(v) �

200 0≤ v≤ 15.28,

46682
v
2 15.28< v< ≤ 22.22,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bm(v) � 159.6 0≤ v≤ 22.22,

W0(v) � 216 4.5024 + 0.1089v + 0.0108v
2

􏼐 􏼑.

(24)

Examples are tested under the MATLAB environment
on a personal computer with Intel Core i5 2.30GHz CPU
and 8GB RAM.

(1) Divide the whole running section into K subsections. Set k � 1, v1 � 0, and VK+1 � 0.
(2) while k≤K do
(3) if vk <Vk+1 (MA regime) then
(4) Set μf,k � 1 and μb,k � 0 to calculate vk+1.
(5) else if vk � Vk+1 (CR regime) then
(6) Set vk+1 � Vk + 1 to calculate μf,k and μb,k.
(7) else if vk >Vk+1 (MB regime) then
(8) Set vk+1 � Vk+1 and k′ � k + 1. Ten, reverse search the starting point of MB regime (k′):
(9) repeat
(10) Set μf,k′

′ � 0 and μb,k′
′ � 1 to calculate vk′−1′ . Since , set k′ � k′ − 1.

(11) until vk′
′ � vk

(12) Set μf,κ � μf,κ′ , μb,κ � μb,κ′ , and vκ � vκ′, for κ ∈ k′, k′ + 1, . . . , k􏽮 􏽯

(13) end if
(14) k � k + 1
(15) end while

ALGORITHM 1:Flat-out trajectory calculation.

xaj
xcj

xbj
xdj

x

Subinterval j
v

Figure 5: Te illustration of the subinterval.

Subinterval j Subinterval j+1

xdj 
= xbj

xcj+1 
= xaj+1

x

x

v

v
New Subinterval

Figure 6: Te illustration of the subinterval merging.
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4.1. Example 1: Scenarios of Single-Section Running. In this
example, the train trajectories of sections [S1, S2], [S2, S3],
[S3, S4], and [S4, S5] were analyzed. Four diferent types of
trajectories are compared to verify the performance of the
proposed coasting control algorithm for single-section train
control. More details about these four trajectories are as
follows:

(1) T-Pra: Practical trajectory obtained from the
equipped ATO systems

(2) T-fat: Flat-out trajectory with a minimum running
time and maximum energy consumption, which can
be calculated based on the Algorithm 1;

(3) T-CC: Optimal trajectory calculated based on the
proposed coasting control algorithm (Algorithm 2);

(4) T-DP: Optimal trajectory calculated based on dy-
namic programming, more details can be seen in
Appendix.

Specially, the DP algorithm is introduced to compare
with the coasting control algorithm, aiming to demonstrate
its efect. ∆x is set to be 1m in the coasting control algo-
rithm, and then the running processes of four sections are
divided into 990, 1225, 1257, and 776 subsections, re-
spectively. Meanwhile, ∆x is also set to be 1m in the DP
algorithm, and ∆v is set to be 0.02m/s. For four diferent
types of trajectories, the trajectories and control commands
are shown in Figure 8, and the performance is shown in
Table 4.

As shown in Figure 8, T-fat is keeping close to the speed
restrictions in the running process, in which there is no
coasting regime. Te T-fat corresponds to the maximum
energy consumption and the minimum running time in each
section, as shown inTable 4. For T-Pra, accelerating regimes are
applied to reach a high speed at the beginning of the running
process, then braking regimes are applied for the low-speed
restriction and train stops. Compared to T-CC and T-DP, we
can observe that fewer coasting regimes are applied in T-Pra, as
shown in Figure 8. For T-CC and T-DP, MA regimes are
applied at the beginning of the running process and MB re-
gimes are applied at the stopping process. Tis kind of strategy
avoids the train from staying in low-speed phases and wasting
running time supplements. Considering the running time
constraint, there will be more time for train coasting to reduce
energy consumption. Terefore, as shown in Table 4, the
comparison results of single-section running with the same
running times show that T-CC can achieve 26.16%, 37.51%,
12.12% and 35.31%, energy-saving for sections [S1, S2], [S2, S3],
[S3, S4], and [S4, S5], respectively, in comparison to T-Pra.
Meanwhile, T-DP can achieve 26.46%, 37.35%, 12.40%, and
36.19% energy-saving for four sections, respectively. Te little
deviations in energy-saving performance between T-CC and

(1) Divide the whole running section into K subsections. Calculate the fat-out trajectory based on the Algorithm 1. Initialize the
running time supplement T

sup
i,i′

� Ti,i′ − Tf lat
i,i′

. Divide the whole running section into J subintervals based on the defnition of the
subinterval.

(2) while T
sup
i,i′
≥ 0 do

(3) for j � 1 to J do
(4) Move the beginning position of coasting regime xcj

with step ∆x backward temporarily, cj
′ � cj − 1. Calculate the ending

position of coasting regime xdj
′ with μf,k′ � μb,k′ � 0, for k′ ∈ cj

′, . . . , dj
′􏽮 􏽯. Calculate ρj based on the temporarily modifed

trajectory.
(5) end for
(6) Determine the subinterval j′ with maximum ρj

′, ρj
′ ≥ ρj, for j ∈ 1, . . . , J{ }. Update cj′ � cj′

′, dj′ � dj′
′, and T

sup
i,i′

� T
sup
i,i′

− ∆Tj′ .
(7) for j � 1 to J − 1 do
(8) if xdj

� xbj
and xc,j+1 � xa,j+1 then

(9) Merge the subinterval j and subinterval j + 1. Update J � J − 1.
(10) end if
(11) end for
(12) end while

ALGORITHM 2: Coating control algorithm.
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Figure 7: Te illustration of speed restriction and gradient
changing.

Table 3: Train parameters.

Parameters Value
Train mass, M 216 (t)
Rotary mass coefcient, c 0.08
Efciency of train motor, η 0.85
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T-DP might come from the speed discretization in the DP
algorithm and the small diferences in running times.

In terms of computation time, the average computation
times of T-CC and T-DP for four sections are 1.1 s and
261.9 s, respectively. Tis means that, for single-section train
control, applying the coasting control algorithm can achieve
the similar energy-saving efect as the DP algorithmwith less
computation time. Specially, the computation time of the
coasting control algorith m can reach a 10ms level when
running in a C environment.

In addition, to verify the feasibility of the coasting
control algorithm, the optimal trajectories with diferent
running times in sections [S1, S2] are analyzed. T-CC with
diferent running times is shown in Figure 9, and the cor-
responding running time supplements of each subinterval
and energy consumption are shown in Table 5. First, the
whole running process from S1 to S2 is divided into two
subintervals due to the low-speed restriction, as shown in
Figure 9. As the running time increases, running time
supplements are added into the subintervals with coasting

Table 4: Te comparison of diferent trajectories and running time distribution schemes from S1 to S5.

Section
index

[S1, S2] [S2, S3] [S3, S4] [S4, S5] [S1, S5] (total)
T1,2
(s)

J1,2
(kWh)

T2,3
(s)

J2,3
(kWh)

T3,3
(s)

J3,4
(kWh)

T4,5
(s)

J4,5
(kWh)

T1,5
(s)

J1,5
(kWh)

T-fat 80.97 20.38 103.51 17.63 91.59 22.24 71.72 15.94 347.79 76.19
T-Pra 88.40 13.15 109.80 12.45 100.90 14.44 79.80 9.09 378.90 49.13
T-DP 88.31 9.67 109.72 7.80 100.90 12.65 79.78 5.80 378.71 35.92
T-CC 88.31 9.71 109.77 7.78 100.82 12.69 79.78 5.88 378.68 36.06
T-CC with optimal running times 89.46 9.12 110.17 7.58 101.03 12.59 78.22 6.53 378.88 35.83
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Figure 8: Te illustration of trajectories and control commands μ for four sections. (a) Section [S1, S2]. (b) Section [S2, S3]. (c) Section
[S3, S4]. (d) Section [S4, S5].
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duration addition. In addition, the energy-saving efects ρ of
the subintervals 1 and 2, as shown in Figure 10, guide the
distribution of running time supplements. Running time
supplement is added to the subinterval with the larger ρ for
more energy consumption reduction. Specially, the maxi-
mum running time supplement of the subinterval 2 is 0.08 s.
When the running time supplement of subinterval reaches
the maximum one, there is no room for coasting regime
addition, like the cases 85.97 s and 90.97 s. Since, when the
running time supplement is large enough, two subintervals
are merged into one subinterval, as in the cases 100.97 s and
110.97 s in Figure 9.

4.2. Example 2: Scenarios of Multisection Running. In this
example, we optimize the train trajectories and related to
running time schemes for the running process from S1 to S2,
based on the proposed coasting control algorithm. T-CC
with optimal running times is compared with the other
trajectories with pre-given running times, to verify the
performance of the coasting control algorithm for the
multisection train control. T-CCwith optimal running times
represents the optimal trajectories calculated based on the
optimal model 21, in which trajectories and running times
for the multisection running process are optimized inte-
gratedly. T-CC with optimal running times and T-CC with

Table 5: Te comparison of T-CC with diferent running times from S1 to S2.

Pre-given
running time (s)

Running time supplement
in subinterval 1 (s)

Running time supplement
in subinterval 2 (s) Energy consumption (kWh)

80.97 0 0 20.38
81.97 (+1) 0.96 0.03 16.16
82.97 (+2) 1.91 0.07 14.34
85.97 (+5) 4.86 0.08 11.23
90.97 (+10) 9.90 0.08 8.47
100.97 (+20) 20.318 (merged subinterval) 5.72
110.97 (+30) 29.672 (merged subinterval) 4.58
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Figure 10: Te illustration of energy-saving efects ρ for the subinterval 1 (a) and 2 (b)
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pre-given running times are compared in Figure 11, and the
train running times and energy consumption of each section
for T-CC with optimal running times are shown in Table 4.

As shown in Table 4, by comparing T-CC with pre-given
running times and T-CCwith optimal running times, we can
observe that the running times of each section are diferent
in these two plans. Due to the change in running times, there
are also diferences in the trajectories. As shown in Figure 11,
with running time addition, more coasting regimes are
added into the trajectories in sections [S1, S2], [S2, S3], and
[S3, S4] of T-CC with optimal running times. Meanwhile, the
energy consumption in these three sections can be reduced
in comparison to those of T-CC with pre-given running
times. On the other hand, with running time reduction in the
sections [S4, S5], the energy consumption of T-CC with
optimal running times in this section is larger than it of
T-CC with the pre-given running times. In terms of the
whole running process, for T-CC with optimal running
times, the total energy consumption can be reduced from
36.06 kWh to 35.83 kWh compared to T-CC with pre-given
running times.

5. Conclusion

In this paper, we studied the optimal train control problem
to reduce energy consumption. Combining the operational

constraints and energy-saving objective, we developed
distance-based train trajectory optimization models for the
single-section and multi-section operations. A coasting
control algorithm was proposed to generate the energy-
efcient trajectories, in which the coasting control regime
points were determined according to the energy-saving
efect.

Numerical examples based on one of the Beijing metro
lines were implemented in two diferent cases, i.e., single-
section and multisection operation, to demonstrate the
performance of the proposed coasting control algorithm.
Te computational results showed that, by applying the
coasting control algorithm, the energy consumption of
single-section operation can be reduced efectively by
around 12.12% to 37.35% in comparison to the practical
trajectories obtained from equipped ATO systems. Mean-
while, the coasting control algorithm was compared with the
DP algorithm; the former can achieve a similar energy-
saving performance in shorter computation times. For the
multisection operation, the proposed coasting control al-
gorithm can generate energy-saving running time schemes
and related trajectories by optimizing the whole running
process integratedly.

Our future research will focus on the online train control
problem to deal with the dynamic situations, like temporary
speed restrictions.Tis paper only deals with the ofine train
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Figure 12: Te illustration of the speed-distance network.
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trajectory optimization problem. However, the train tra-
jectories will be adjusted in real-time operation to keep safe
and punctual operations.

Appendix

Dynamic programming for energy-saving train control
Dynamic programming is introduced in this section,
which has been widely applied in the energy-saving
train control problem [13–17]. First, the whole speed-
distance space is discretized into diferent stages
1, 2, . . . , K, K + 1{ }, over which all the possible speed
variations can be represented as a variety of links be-
tween diferent grid points [16], as shown in Figure 12.
φk is introduced to represent the state set of stage k:

φk � xk, vk( 􏼁 ∈ xk, vk,1􏼐 􏼑, . . . , xk, vk,mk
􏼐 􏼑􏽮 􏽯, (A.1)

where mk is determined by the speed restriction Vk,
mk∆v � Vk. According to the constraint 14, the initial
state and the fnal state should be equal to zero, which
can be described as follows:

φ1 � (0, 0),φK+1 � xK+1, 0( 􏼁. (A.2)

Introducing p(vk, vk+1) as the indicator function from
stage k + 1 to stage k, which can be calculated as
follows:

p vk, vk+1( 􏼁 � Ek + λτk, (A.3)

where Ek can be calculated based on equation (12); τk is
equal to 2∆x/(vk + vk+1); λ is a weight coefcient to
balance energy consumption and running time. In
addition, the cumulative indicator Pk will be calculated:

Pk � min p vk, vk+1( 􏼁 + min pvk+1, vK+1( 􏼃􏼈 􏼉. (A.4)

Te dynamic programming process of the energy-
efcient train control includes two steps: backward
calculation and forward search [13]. In the frst step, the
optimal policy on the grid point of state space is de-
termined and recorded from k � K + 1 to k � 1. Ten,
an optimal trajectory can be created by searching
forward from k � 1 to k � K + 1 based on the optimal
policy.
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